Fault diagnosis on material handling system using feature selection and data mining techniques

نویسندگان

  • M. Demetgul
  • K. Yildiz
  • S. Taskin
  • I. N. Tansel
  • O. Yazicioglu
چکیده

The material handling systems are one of the key components of the most modern manufacturing systems. The sensory signals of material handling systems are nonlinear and have unique characteristics. It is very difficult to encode and classify these signals by using multipurpose methods. In this study, performances of multiple generic methods were studied for the diagnostic of the pneumatic systems of the material handling systems. Diffusion Map (DM), Local Linear Embedding (LLE) and AutoEncoder (AE) algorithms were used for future extraction. Encoded signals were classified by using the Gustafson–Kessel (GK) and k-medoids algorithms. The accuracy of the estimations was better than 90% when the LLE was used with GK algorithm. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms

Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...

متن کامل

Evaluation of Classifiers in Software Fault-Proneness Prediction

Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Feature Selection and Categorization to Design Reliable Fault Detection Systems

In this work, we will develop a fault detection system which is identified as a classification task. The classes are the nominal or malfunctioning state. To develop a decision system it is important to select among the data collected by the supervision system, only those carrying relevant information related to the decision task. There are two objectives presented in this paper, the first one i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015